wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(q)=∣ ∣1cosθ1sinθ1cosθ1sinθ1∣ ∣ and A and B are respectively the maximum and minimum values of f(θ), then (A,B) is equal

Open in App
Solution

Expanding the determinant along row 1,
f(θ)=1(1sinθcosθ)1(sinθcosθ)+1(sin2θ1)
=1sinθcosθsinθ+cosθ+sin2θ1
=sinθ(sinθcosθ)1(sinθcosθ)
=(sinθ1)(sinθcosθ)
For maximum or minimum, f(θ)=0
f(θ)=(sinθ1)(cosθ+sinθ)+cosθ(sinθcosθ)
=(sinθcosθ)(sinθ+cosθ1)=0
When sinθ=cosθ or sinθ+cosθ=1
θ=π4
θ=0 or π2
At θ=0,f(θ)=(1)(1)=1
θ=π4,f(θ)=(121)(1212)=0
θ=π2,f(θ)=(11)(10)=0
A=1,B=o
(A,B) are not equal.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon