If f(θ)=5cosθ+3cos(θ+π3)+3, then range of f(θ) it
f(θ)=5cosθ+3cos(θ+π3)+3
=5cosθ+3(cosθcosπ3−sinθsinπ3)+3
=5cosθ+3(12cosθ−√32sinθ)+3$
=13cosθ2−3√3sinθ2+3
As −√a2+b2≤acosx−bsinx≤√a2+b2
Therefore
−7≤13cosθ2−3√3sinθ2≤7
⇒−7+3≤13cosθ2−3√3sinθ2+3≤7+3
⇒−4≤f(θ)≤10