The correct option is C The equation of normal to the graph of y=f(x) at point M whose abscissa is π is given by x−π=0
f(x)−2sin2xcos5xπ/4∫0cost⋅f(t)dt=sin2xcos5x
Let A=π/4∫0cost⋅f(t)dt
∴f(x)−2Asin2xcos5x=sin2xcos5x⇒f(x)=(2A+1)sin2xcos5x …(1)
Now, A=π/4∫0cost⋅(2A+1)sin2tcos5tdt
=(2A+1) π/4∫0sin2tcos4tdt=(2A+1)π/4∫0tan2tsec2t dt
⇒A=(2A+1)13⇒3A=2A+1
⇒A=1.
Hence from equation (1),
we get f(x)=3sin2xcos5x
limx→π3f(x)=limx→π33sin2xcos5x=3(√32)2(12)5=72
As f(x)=3sin2xcos5x,
so, f(x) is periodic with fundamental period 2π
f(x)=3sin2xcos5x⇒f′(x)=3[cos5x⋅(2sinx⋅cosx)+sin2x⋅(5cos4x⋅sinx)cos10x]
So, equation of normal to the graph of y=f(x) at point M(π,0) is given by x−π=0
As f(x)=0
⇒3sin2xcos5x=0⇒sinx=0
∴x=nπ,n∈Z
So, the equation f(x)=0 has no root in (0,3)