If f(x)=∣∣
∣∣sinxcosxtanxx3x2x2x11∣∣
∣∣, then limx→0f(x)x2 is
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Zero
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1 f(x)=∣∣
∣∣sinxcosxtanxx3x2x2x11∣∣
∣∣⟹f(x)=sinx(x2−x)−cosx(x3−2x2)+tanx(x3−2x3)⟹f(x)=x2sinx−xsinx−x3cosx+2x2cosx−x3tanx⟹f(x)x2=sinx−xcosx+2cosx−xtanx−sinxx⟹limx⟶0f(x)x2=limx⟶0sinx−limx⟶0xcosx+limx⟶02cosx−limx⟶0xtanx−limx⟶0sinxx⟹limx⟶0f(x)x2=0−0+2−0−1⟹limx⟶0f(x)x2=1