wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=1+tanx1tanxthenf(π6)=?

Open in App
Solution

f(x)=1+tanx1tanx

Replace 1tanπ4 we get

f(x)=tanπ4+tanx1tanπ4tanx

f(x)=tan(π4+x) using tanA+tanB=tanA+tanB1tanAtanB

Differentiating both sides w.r.t x we get

f(x)=sec2(π4+x)

f(π6)=sec2(π4+π6)

=sec2(3π+2π12)

=sec2(5π12)

=sec275

=(1cos(45+30))2

=(1cos45cos30sin45sin30)2

=⎜ ⎜ ⎜ ⎜ ⎜1322122⎟ ⎟ ⎟ ⎟ ⎟2

=(2231)2

=4×23+123

=8423

=423

=423×2+32+3

=4(2+3)43

=8+43

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon