wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=cos2x+sin4xsin2x+cos4xxR then show that f(2012)=1.

Open in App
Solution

f(x)=cos2x+sin4xsin2x+cos4x, show that f(2012)=1
f(x)=cos2x+(sin2x)2sin2x+cos4x
=cos2x+(1cos2x)2sin2x+cos4x (sin2x=1cos2x)
=cos2x+12cos2x+cos4xsin2x+cos4x
=1cos2x+cos4xsin2x+cos4x
=sin2x+cos4xsin2x+cos4x
=sin2x+cos4xsin2x+cos4x
(1cos2x=sin2x)
f(x)=1
f(2012)=1.

1120069_1244875_ans_3593f9ffe4e5474a9ca59e6b51d20908.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon