If f(x)=ex1+ex,I1=∫f(a)f(−a)xg{x(1−x)}dx and I2=∫f(a)f(−a)g{x(1−x)}dx, then the value of I2I1 is
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D2 Given, f(x)=ex1+ex Thus f(a)=ea1+ea and f(−a)=e−a1+e−a=1ea+1 Therefore, f(a)+f(−a)=ea1+ea+1ea+1=1 ⇒f(a)=1−f(−a) Let f(−a)=t⇒f(a)=1−t Now, I1=∫f(a)f(−a)xg{x(1−x)}dx I1=∫1−ttxg{x(1−x)}dx ...(i) I1=∫1−tt(1−x)g{x(1−x)}dx ...(ii) On adding equations (i) and (ii), we get 2I1=∫1−ttg{x(1−x)}(x+1−x)dx =∫1−ttg{x(1−x)}dx=I2 ⇒2I1=I2 ⇒I2I1=2