If f(x)=(a+x)2sin(a+x)−a2sinax,x≠0, the value of f(0) so that f is continuous at x=0 is
A
a2cosa+asina
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2cosa+2asina
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2a2cosa+asina
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ba2cosa+2asina To be continuous at x=0, the value of the function at this point must be equal to the limit of the function here. So, f(0)=limx→0f(x)=limx→0(a+x)2sin(a+x)−a2sinax=limx→0(a2+x2+2ax)(sinacosx+cosasinx)−a2sinax=limx→0(−a2sina(1−cosx)x+a2cosasinxx+x(sinacosx+cosasinx)+2a(sinacosx+cosasinx))=a2cosa+2asina (Using limx→0(1−cosx)x=0,limx→0sinxx=1)