wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=secx+tanx1tanxsecx+1, then find f(π3)

Open in App
Solution

secx=1+tan2x21tan2x2
tanx=2tanx21tan2x2
f(x)=1+tan2x2+2tanx21+tan2x21tan2x2+2tanx2+1tan2x2
f(x)=2tan2x2+2tanx22tan2x2+2tanx2
f(x)=2tanx2(tanx2+1)2tanx2(tanx2+1)
f(x)=1+tanx21tanx2
f(x)=12sec2x2(1tanx2)+12sec2x2(1+tanx2)(1tanx2)2
f(x)=sec2x2(1tanx2)2
f(Π3)=434233



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon