If f(x)=sinxx∀x∈[0,π], then π2∫π20f(x)f(π2−x)dx is equal to
A
π2∫π20f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π∫π0f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∫π0f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
∫π20f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C∫π0f(x)dx Let, I=π2∫π20f(x)f(π2−x)dx =π2∫π20sinxxcosxπ2−xdx=π2∫π20sin2xx(π−2x)dx =π2∫π0sinzz(π−z)dz(Let 2x=z⇒2dx=dz) =12∫π0sinz(1z+1π−z)dz =12(∫π0sinzzdz+∫π0sinzπ−zdz)=∫π0sinzzdz