wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=limnnr=0tanx2r+1+tan3x2r+11tan2x2r+1

then limx0f(x)sinxx3=?

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12
tanx/2=sinx/2cosx/2=sinx1+cosx
=sinx1+cosx=sinxcosx1cosx+1=tanxsecx+1
tanx2secx=tanxtanx2
Replacing x by x2
tan(x4)secx2=tanx2tanx4
tan(x2n+1)sec(x2n)=tan(x2n)tan(x2n+1)
Repeating the steps we get
nr=0tanx2r+1×⎜ ⎜ ⎜1+tan2x2r+11tan2x2r+1⎟ ⎟ ⎟=nr=0tanx2r+1sec2x2r+1
=nr=0tanx2r+1secx2r
=(tan(x)tan(x2))+(tan(x2)tan(x4))+....+(tan(x2n)tan(x2n+1))
=tanxtan(x2n+1)
f(x)=limn(tanxtan(x2n+1))
=tanx0
=tanx
limx0f(x)sinxx3=limx0tanxsinxx3
=limx0tanx(1cosx)x3=limx0tanxx×((1cosx)x2)
=1×12=12


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon