f(x)=(x−a)(x−b)(x−c)(c−d)
logf(x)=∑log(x−a)
1f(x).f′(x)=1x−a+..
Our answer is
f(x)−xf′(x)=f(x)[1−x.f′(x)f(x)]
f(x)[1−x{1x−a+...}]
()()()()−x{()()()+⋯+⋯+} .(1)
Apply C1−C2, C2−C3, C3−C4
Δ=∣∣
∣
∣
∣∣−(x−a)00x(x−b)−(x−b)0x0(x−c)−(x−c)x00(x−d)d∣∣
∣
∣
∣∣
Expand with first row
Δ=(x−a)∣∣
∣
∣∣−(x−b)0x(x−c)−(x−c)x0(x+d)d∣∣
∣
∣∣−∣∣
∣
∣∣(x−b)−(x−b)00(x−c)−(x−c)00(x−d)∣∣
∣
∣∣
=(x−a)(x−b)()+(x−c)d+(x−b)(x−d)x+x(x−c)(x−d)−x(x−b)(x−c)(x−d)
Now write d as x−(x−d).
It takes the form of (1) i.e.
(x−a)(x−b)(x−c)(x−d)−x{(x−a)(x−b)(x−c)+⋯+⋯+}
i.e. Δ=f(x)−xf′(x).