wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (f(x))g(y)=ef(x)g(y) then dydx

A
f(x)logf(x)g(y)(1+logf(x))2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)logf(x)g1(y)(1+logf(x))2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(x)logf(x)g(y)(1logf(x))2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2f(x)logf(x)g(y)(1+logf(x))2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B f(x)logf(x)g1(y)(1+logf(x))2
Let y=f(x)dydx=f(x)

Given:(f(x))g(y)=ef(x)g(y)

Applying log to both sides,we get

log(f(x))g(y)=logef(x)g(y)

g(y)log(f(x))=f(x)g(y)

g(y)log(f(x))+g(y)=f(x)

g(y)(1+log(f(x)))=f(x)

g(y)=f(x)(1+log(f(x)))

Differentiating both sides w.r.t x we get

g(y)dydx=(1+log(f(x)))f(x)f(x)f(x)f(x)(1+log(f(x)))2

g(y)dydx=(1+log(f(x)))f(x)f(x)(1+log(f(x)))2

g(y)dydx=f(x)+logf(x)f(x)f(x)(1+logf(x))2

g(y)dydx=logf(x)f(x)(1+logf(x))2

dydx=f(x)logf(x)g(y)(1+logf(x))2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon