The correct option is
B α>0f(x)=⎧⎨⎩xαC.D(1x),if x≠00,if x=0
continuous at x=0
Left hand limit
L.H.L=limx→0−f(x)=(0−)αC.D(10−)
We know that 10−⇒−∞
But C.D(−∞)→ always will lie (−1,1]
It means C.D(10−) will be finite quantity.
Similarly It I check Right hand limit then-
R.H.Llimx→0+=(0+)αC.D(10+)
Again same 10+⇒∞
C.D(10+)⇒ will lie (−1,1)
Now is α<0⇒(0+)negative(−1,1)⇒1(0+)positive(−1,1)
⇒ this will give undefine
So, is α>0 then (0+)positive(−1,1)=0(−1,1)=0
Similarly (0−)positive(−1,1)=0[−1,1]=0
Ans it α=0, then L.H.L will lie [−1,1]
and R.H.L will lie [−1,1]
So, for this we can not say clearly that this the limit value
So, for α>0→ function is continuous at x=0