If f(x)=max{sinx,cosx,12}, then the area of the region bounded by the curves y=f(x),x−axis y−axis and x=2π is
A
(5π12+3).sq.unit
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(5π12+√2).sq.unit
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(5π12+√3).sq.unit
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(5π12+√2+√3).sq.unit
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(5π12+√2+√3).sq.unit ∵f(x)=max{sinx,cosx,12} Interval value of f(x) For 0≤x<π4,cosx For π4≤x<5π6,sinx For 5π6≤x<5π3,12 For 5π3≤x<2π,cosx Hence, required area =∫π40cosxdx+∫5π6π4sinxdx+∫5π35π612dx+∫2π5π3cosxdx =[sinx]π40−[cosx]5π6π4+12[x]5π35π6+[sinx]2π5π3 =(1√2−0)−(−√32−1√2)+12(5π3−5π6)+(0+√32) On simplification, we get =(5π12+√2+√3).sq.unit.