Given f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)
and g(54)=1
f(x)=12[2sin2x+2sin2(x+π3)+2cosxcos(x+π3)]
=12[1−cos2x+1−cos(2x+2π3)+cos(2x+π3)+cosπ3]
=12[52−cos2x−cos(2x+2π3)+cos(2x+π3)]
=12[52−2cos(2x+π3)cos(π3)+cos(2x+π3)]
=12[52−cos(2x+π3)+cos(2x+π3)]=54
f(x)=54 for all x∈R
Therefore for any x∈R we have
gof(x)=g(f(x))=g(54)=1
Thus gof(x)=1forallx∈R
Hence gof(x)=1