If f'(x)=√2x2−1 and y=f(x2) then dydx at x=1 is
We have,
f(x)=√2x2−1
And
y=f(x2)
y=(√2x2−1)2
y=2x2−1
On differentiating and we get,
dydx=ddx(2x2−1)
dydx=4x−0
dydx=4x
At point (x=1)
So,
dydx=4x=4(1)
dydx=4
Hence, this is the answer.