solve the inequality cos x ≤ −12
Prove x=(2nπ±2π3)orx=mπ+(−1)m.7π6, where m, n∈I
If the equation (cosec2θ−4)x2+(cot θ+√3)x+cos23π2=0 holds true for all real x, then the general value of θ can given by (nϵZ)