The correct options are
A f is differentiable at all points of its domain except x=4
B f is differentiable on (2,∞)∼{4}
C f′(x)=0 for all xϵ[2,4)
f(x)=√x+2√2x−4+√x−2√2x−4
Here, 2x−4≥0
⇒x≥2
So, domain of f is [2,∞)
Put t=√2x−4
f(x)=√t22+2+2t+√t22+2−2t
=1√2(t+2)+1√2|t−2|
f(x)={1√2×4 if t<2√2t if t≥2
f(x)={2√2 if xϵ[2,4)2√x−2 if xϵ[4,∞)
Hence f′(x)={0 if xϵ[2,4)1√x−2 if xϵ(4,∞)
f′(4−)=0
f′(4+)=1√2
Since, LHD≠RHD at x=4
So,f(x) is not differentiable at x=4