Given : f(xy)=f(x)⋅f(y)−f(x+y)+1
Putting y=1, we get
f(x)=2f(x)−f(x+1)+1⇒f(x+1)−f(x)=1f(2)−f(1)=1f(3)−f(2)=1f(4)−f(3)=1⋮f(x+1)−f(x)=1⇒f(x+1)−f(1)=x⇒f(x+1)=x+2∴f(x)=x+1
Now, let
S=∞∑k=1f(k)2k⇒S=∞∑k=1x+12k⇒S=221+322+423+524⋯⋯⇒S2= 222+323+424+⋯⋯⇒S2=1+122+123+124+⋯⋯⇒S2=1+141−12⇒S=3∴1+∞∑k=1f(k)2k=1+3=4