Given f(x)=3x−3x−5
For one-one, we have to show
If f(x1)=f(x2)⇒x1=x2
⇒3x1−3x1−5=3x2−3x2−5⇒x1=x2
∴f(x) is one-one.
For onto, let y=3x−3x−5
⇒x=5y−3y−3 ...(1)
The above equation is defined for forall y∈R−{3}
∵∀ x∈R−{5}, ∀ y∈R−{3}
∴ f(x) is onto.
From equation (1) we get
f−1(y)=xf−1(y)=5y−3y−3∴f−1(x)=5x−3x−3