The correct option is D If k∈(1,3), then α+β=6
f:R−{−1,k}→R−{α,β}
f(x)=(2x−1)(2x2−4px+p3)(x+1)(x2−p2x+p2)
For the domain to be R−{−1,k},
k must be a repeated root of x2−p2x+p2=0
∴p4−4p2=0⇒p2(p2−4)=0⇒p=0,±2
But given that p≥0
∴p=0,2
Now, for p=0
f(x)=(2x−1)2x2(x+1)(x2),
Domain of f is R−{−1,0}
∴k=0
Let y=4(x−1)x+1
⇒x=y+24−y, (y≠4)
Also, limx→0f(x)=−2
Hence, range of f is R−{4,−2}
∴α+β=2
For p=2
f(x)=(2x−1)2(x−2)2(x+1)(x−2)2,
Domain of f is R−{−1,2}
∴k=2
and limx→2f(x)=2
Hence, range of f is R−{4,2}
∴α+β=6