The correct option is D f(x)=0 has only one solution
f(x)=ex+1∫0(x+yex)f(y) dy⇒f(x)=ex+x1∫0f(y) dy+ex1∫0yf(y) dy⇒f(x)=ex⎛⎜⎝1+1∫0yf(y) dy⎞⎟⎠+x1∫0f(y) dy⇒f(x)=aex+bx
⇒f(y)=aey+by ...(1)
Now,
a=1+1∫0yf(y) dy
From eqn (1),
a=1+1∫0y(aey+by) dy
⇒a=1+a1∫0yey dy+b1∫0y2 dy
Using by parts
⇒a=1+a[ey⋅y−ey]10+b3⇒a=1+a+b3⇒b=−3
Now,
b=1∫0f(y) dy⇒b=1∫0(aey+by) dy⇒b=[aey+by22]10⇒b=a(e−1)+b2⇒a=−32(e−1)
∴f(x)=−3[ex2(e−1)+x]
When
x→−∞⇒f(x)→∞x→∞⇒f(x)→−∞
Differentiating the function w.r.t. x,
f′(x)=−3[ex2(e−1)+1]⇒f′(x)<0, ∀ x∈R
∴f(x) is decreasing function.
Hence, f(x) is both one-one and onto.
f(x)=0 has only one solution.