The correct option is B f(x) is a decreasing function ∀ x∈R
We have
f(x)=ex+1∫0exf(t) dt⇒f(x)=ex+ex1∫0f(t) dt⇒f(x)=aex
where a=1+1∫0f(t) dt
⇒a=1+1∫0aex dt⇒a=1+a(e−1)⇒a=12−e
Therefore, f(x)=ex2−e
f(0)=12−e<0 (∵e>2)
Now, f′(x)=ex2−e<0 (∵ex>0)
Therefore, f(x) is a decreasing function ∀ x∈R
1∫0f(x) dx=1∫0ex2−e dx⇒1∫0f(x) dx=e−12−e<0