The correct option is C 34
For equal degree in both sides, f(x) must be a linear function.
Let f(x)=ax+b
⇒f(ax+b)=6x−ax−b
Given that f(f(x))=6x−f(x)
⇒a(ax+b)+b=6x−ax−b
On comparing both sides,
a2=6−a and ab+b=−b
⇒a2+a−6=0 and ab+2b=0
⇒(a+3)(a−2) and b(a+2)=0
⇒a=2 or −3 and b=0 or a=−2
⇒a=2,b=0 or a=−3,b=0
⇒f(x)=2x or −3x
But codomain of f is R+.
So, f(x)=2x
⇒f(17)=34