The correct option is D many-one function
We know,
[x]={⋯,−1,0,1,2,3,⋯}
When [x] is even integer, then
f(x)=0
When [x] is odd integer, then
f(x)=±1
Clearly range of f(x) is {−1,0,1}
As range ≠ codomain, so f(x) is into function.
For ∀x∈[0,1),[x]=0⇒f(x)=0, so f(x) is a many-one function.
When
x∈[1,2)⇒[x]=1⇒f(x)=1x∈[2,3)⇒[x]=2⇒f(x)=0x∈[3,4)⇒[x]=3⇒f(x)=−1x∈[4,5)⇒[x]=4⇒f(x)=0x∈[5,6)⇒[x]=5⇒f(x)=1x∈[6,7)⇒[x]=6⇒f(x)=0x∈[7,8)⇒[x]=7⇒f(x)=−1x∈[8,9)⇒[x]=8⇒f(x)=0
Hence f(x) is a periodic function with period 4.