The correct option is C f(x) is increasing in (0,∞)
f′(x)−2f(x)>0
e−2x⋅f′(x)−2e−2x⋅f(x)>0
ddx(e−2xf(x))>0⇒e−2x⋅f(x) is increasing function.
e−2x⋅f(x)>1 for all x∈(0, ∞)
f(x)>e2x
∵f′(x)>2f(x)>e2x>0
∴f(x) is increasing
Also as, f′(x)=f(x)−f(0)x−0
⇒f′(x)=f(x)−1x
i.e., f′(x)>e2x∀x∈(0, 1)
<e2x∀x∈(1, ∞)