The correct option is D neither a one one nor an onto function
f(x)=x+√x2
f(x)=x+|x|
When x is negative
f(−1)=−1+|−1|=0f(−2)=−2+|−2|=0f(−3)=−3+|−3|=0
∴f(x) is a many-one function.
Also f(x)=x+|x|
We have seen that when x is negative, f(x) is always 0.
Now when x is positive,
f(x)=2x
Hence the range would be [0,∞)
f(x) is not an onto function since its range is not equal to its co-domain.
∴f(x) is neither one-one nor onto function.