wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fn(α)=sinα+sin3α+sin5α+.....+sin(2n1)αcosα+cos3α+cos5α+.....+cos(2n1)α find f4(π/32).

Open in App
Solution

Using,
n1k=0cos(a+kd)=sin(n×d/2)sind2×cos(2a+(n1)d2)
& n1k=0sin(a+kd)=sin(nd/2)sind2×sin(2a+(n1)d2)
fn(α)=sinα+sin3α+.....+sin(2n1)αcosα+cos3α+....+cos(2x1)α
Here, a=α & d=2α
fn(α)=sin(nd/2)sind2×sin(2a+(n1)d2)sin(n×d/2)sind2×cos(2a+(n1)d2)
=sin(α+(n1)αcos(α+(n1)α [ As sin(nd/2)sin(d/2)0
=tan(nα)
f4(32)=tan(4.π32)=tanπ8=21

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon