wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(n)=αn+βn and ∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣=k(1α)2(1β)2(αβ)2, then k

A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
αβγ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1
Δ=∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣=∣ ∣ ∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣ ∣ ∣=∣ ∣1111αβ1α2β2∣ ∣∣ ∣1111αβ1α2β2∣ ∣=∣ ∣1111αβ1α2β2∣ ∣2=(1α)2(1β)2(αβ)2
Therefore k=1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon