The correct option is D limx→ππ(x−π)24(cosx+1)
f(n)=cot−1(n+3)−2cot−1(n+1)+cot−1(n−1)
As tan−1x+cot−1x=π2,
f(n)=tan−1(n+1)−tan−1(n−1)−(tan−1(n+3)−tan−1(n+1))
f(1)=tan−12−tan−10−(tan−14−tan−12)
f(2)=tan−13−tan−11−(tan−15−tan−13)
f(3)=tan−14−tan−12−(tan−16−tan−14)
f(4)=tan−15−tan−13−(tan−17−tan−15)
⋅ ⋅
⋅ ⋅
⋅ ⋅
f(n−1)=tan−1(n)−tan−1(n−2)−(tan−1(n+2)−tan−1(n))
f(n)=tan−1(n+1)−tan−1(n−1)−(tan−1(n+3)−tan−1(n+1))
∑f(n)=f(1)+f(2)+⋯+f(n−1)+f(n)=tan−12+tan−13−tan−10−tan−11 +tan−1(n)+tan−1(n+1)−tan−1(n+2)−tan−1(n+3)
Since 2,3>0, 2×3>0
∴∞∑n=1f(n)=π+tan−1(2+31−2×3)−π4⇒∞∑n=1f(n)=π2
3∑k=1tan−1(1k)=π4+cot−12++cot−13=π4+π2−tan−12+π2−tan−13=π+π4−(π+tan−1(2+31−2×3))=π2
limx→π−sin(x)π−x=limx→π−sin(π−x)π−x
Let x−π=t
As x→π, t→0
⇒limt→0−sintt=−1
limx→0−cot−1(1x)
=limx→0−(π+tan−1(x))=π (∵tan−11x=−π+cot−1x for x<0)
limx→ππ(x−π)24(cosx+1)
=limx→ππ(x−π)24(−cos(π−x)+1)
Let x−π=y
Then limy→0π(y)24(−cosy+1)
=limy→0π(y)28sin2y2=π2