CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(n)=cot1(n+3)2cot1(n+1)+cot1(n1) for nN, then n=1f(n) is equal to

A
3k=1tan1(1k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limxπsin(x)πx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
limx0cot1(1x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
limxππ(xπ)24(cosx+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D limxππ(xπ)24(cosx+1)
f(n)=cot1(n+3)2cot1(n+1)+cot1(n1)
As tan1x+cot1x=π2,
f(n)=tan1(n+1)tan1(n1)(tan1(n+3)tan1(n+1))

f(1)=tan12tan10(tan14tan12)
f(2)=tan13tan11(tan15tan13)
f(3)=tan14tan12(tan16tan14)
f(4)=tan15tan13(tan17tan15)



f(n1)=tan1(n)tan1(n2)(tan1(n+2)tan1(n))
f(n)=tan1(n+1)tan1(n1)(tan1(n+3)tan1(n+1))

f(n)=f(1)+f(2)++f(n1)+f(n)=tan12+tan13tan10tan11 +tan1(n)+tan1(n+1)tan1(n+2)tan1(n+3)
Since 2,3>0, 2×3>0
n=1f(n)=π+tan1(2+312×3)π4n=1f(n)=π2

3k=1tan1(1k)=π4+cot12++cot13=π4+π2tan12+π2tan13=π+π4(π+tan1(2+312×3))=π2

limxπsin(x)πx=limxπsin(πx)πx
Let xπ=t
As xπ, t0
limt0sintt=1

limx0cot1(1x)
=limx0(π+tan1(x))=π (tan11x=π+cot1x for x<0)

limxππ(xπ)24(cosx+1)
=limxππ(xπ)24(cos(πx)+1)
Let xπ=y
Then limy0π(y)24(cosy+1)
=limy0π(y)28sin2y2=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon