wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fn(θ)=cosθ2+cos2θ+cos7θ2++cos(3n2)θ2sinθ2+sin2θ+sin7θ2++sin(3n2)θ2, then match the entries of Column-I with their corresponding values in Column-II.

Column-IColumn-II (A)f1(π2)(P)0(B)f3(3π16)(Q)21(C)f4(2π11)(R)2+1(D)f5(π28)(S)1(T)23

A
(A)(P)(B)(Q)(C)(R)(D)(S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(A)(S)(B)(Q)(C)(P)(D)(R)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(A)(S)(B)(Q)(C)(P)(D)(T)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(A)(T)(B)(R)(C)(P)(D)(R)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (A)(S)(B)(Q)(C)(P)(D)(R)

cosθ2+cos2θ+cos7θ2++cos(3n2)θ2=cosθ2+cos(θ2+3θ2)+cos(θ2+2(3θ2)) ++cos(θ2+(n1)(3θ2))

Here, A=θ2, D=3θ2
Number of trem =n
So,
cosθ2+cos2θ+cos7θ2++cos(3n2)θ2=sinn(3θ4)sin3θ4⎢ ⎢ ⎢cos⎜ ⎜ ⎜θ+(n1)3θ22⎟ ⎟ ⎟⎥ ⎥ ⎥=sin(3nθ4)sin3θ4[cos(3n1)θ4]

Similarly,
sinθ2+sin2θ+sin7θ2++sin(3n2)θ2=sinn(3θ4)sin3θ4⎢ ⎢ ⎢sin⎜ ⎜ ⎜θ+(n1)3θ22⎟ ⎟ ⎟⎥ ⎥ ⎥=sin(3nθ4)sin3θ4[sin(3n1)θ4]

Therefore,
fn(θ)=cot(3n1)θ4

Now,
f1(π2)=cot2π42=1f3(3π16)=cot83π416=cot3π8=21f4(2π11)=cot112π411=0f5(π28)=cot14π428=cotπ8=2+1

Hence,
(A)(S)(B)(Q)(C)(P)(D)(R)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon