The correct option is B (A)→(S)(B)→(Q)(C)→(P)(D)→(R)
cosθ2+cos2θ+cos7θ2+⋯+cos(3n−2)θ2=cosθ2+cos(θ2+3θ2)+cos(θ2+2(3θ2)) +⋯+cos(θ2+(n−1)(3θ2))
Here, A=θ2, D=3θ2
Number of trem =n
So,
cosθ2+cos2θ+cos7θ2+⋯+cos(3n−2)θ2=sinn(3θ4)sin3θ4⎡⎢
⎢
⎢⎣cos⎛⎜
⎜
⎜⎝θ+(n−1)3θ22⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦=sin(3nθ4)sin3θ4[cos(3n−1)θ4]
Similarly,
sinθ2+sin2θ+sin7θ2+⋯+sin(3n−2)θ2=sinn(3θ4)sin3θ4⎡⎢
⎢
⎢⎣sin⎛⎜
⎜
⎜⎝θ+(n−1)3θ22⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦=sin(3nθ4)sin3θ4[sin(3n−1)θ4]
Therefore,
fn(θ)=cot(3n−1)θ4
Now,
f1(π2)=cot2π4⋅2=1f3(3π16)=cot8⋅3π4⋅16=cot3π8=√2−1f4(2π11)=cot11⋅2π4⋅11=0f5(π28)=cot14π4⋅28=cotπ8=√2+1
Hence,
(A)→(S)(B)→(Q)(C)→(P)(D)→(R)