If fn(θ)=n∑r=014rsin4(2rθ), then which of the following alternative(s) is/are correct?
A
f2(π4)=1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f3(π8)=2+√24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f4(3π2)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f5(π)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Cf4(3π2)=1 Df5(π)=0 Given : fn(θ)=n∑r=014rsin4(2rθ) ⇒fn(θ)=n∑r=014rsin2(2rθ)[1−cos2(2rθ)]⇒fn(θ)=n∑r=014r[sin2(2rθ)−sin2(2r+1θ)4]⇒fn(θ)=n∑r=0[sin2(2rθ)4r−sin2(2r+1θ)4r+1]⇒fn(θ)=[sin2θ1−sin2(2θ)4]+[sin22θ4−sin2(4θ)16]+[sin24θ16−sin2(8θ)64]⋮⋮+[sin2(2nθ)4n−sin2(2n+1θ)4n+1]⇒fn(θ)=sin2θ−14n+1sin2(2n+1θ)
Now, checking the options, we get f2(π4)=sin2π4−164sin2(8×π4)⇒f2(π4)=12