wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fn(θ)=nr=014rsin4(2rθ), then which of the following alternative(s) is/are correct?

A
f2(π4)=12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f3(π8)=2+24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f4(3π2)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f5(π)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
C f4(3π2)=1
D f5(π)=0
Given : fn(θ)=nr=014rsin4(2rθ)
fn(θ)=nr=014rsin2(2rθ)[1cos2(2rθ)]fn(θ)=nr=014r[sin2(2rθ)sin2(2r+1θ)4]fn(θ)=nr=0[sin2(2rθ)4rsin2(2r+1θ)4r+1]fn(θ)=[sin2θ1sin2(2θ)4] +[sin22θ4sin2(4θ)16] +[sin24θ16sin2(8θ)64] +[sin2(2nθ)4nsin2(2n+1θ)4n+1]fn(θ)=sin2θ14n+1sin2(2n+1θ)

Now, checking the options, we get
f2(π4)=sin2π4164sin2(8×π4)f2(π4)=12

f3(π8)=sin2π81256sin2(16×π8)f3(π8)=1cosπ42f3(π8)=224

f4(3π2)=sin23π2145sin2(32×3π2)f4(3π2)=1

f5(π)=sin2π146sin2(64π)=0

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon