If f:R→R is defined by f(x)=x-3+x-4 for x∈R, then limx→3-f(x)=
-2
-1
0
1
Explanation for the correct answer:
Step 1: Finding the value of a lower limit
Given function: f(x)=x-3+x-4
Therefore, limx→3-f(x)=limx→3-x-3+limx→3-x-4
Step 2: Replace, xbyh-3
⇒limx→3-f(x)=limh→03-h-3+limh→03-h-4⇒limx→3-f(x)=limh→0-h+limh→0-1-h⇒limx→3-f(x)=limh→0-1+limh→0(1+h)∵greaterintegerfunctionof-h=1,-1-h=(1+h)⇒limx→3-f(x)=-1+1⇒limx→3-f(x)=0
Hence, the correct answer is an option (C).
If f:R→R is defined by f(x)=2x-2x,∀x∈R,where x is the greatest integer not exceeding x, then the range of f is