The correct option is A −sgn(x)√|x|1−|x|
Clearly, f:R→(−1,1), given by f(x)=−x|x|1+x2 is a bijection
Now f∘f−1(x)=x
⇒f(f−1(x))=x
⇒−f−1(x)∣∣f−1(x)∣∣1+(f−1(x))2=x
⇒−(f−1(x))21+(f−1(x))2=x,iff−1(x)≤0
and (f−1(x))21+(f−1(x))2=xiff−1(x)≥0
∴f−1(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩√−|x|1−|x|,ifx≤0−√−|x|1−|x|,ifx>0
∴f−1(x)=−sgn(x)√|x|1−|x|