If f:R→R and g:R→ are defined by f(x)=2x+3 and g(x)=x2+7, then the values of x such that g(f(x))=8 are
1, 2
-1, 2
-1, -2
1, -2
f(x)=2x+3 and g(x)=x2+7 g(f(x))=8⇒f(x)22+7=8⇒(2x+3)2+7=8⇒4x2+9+12x+7=8⇒4x2+12x+16=8⇒x2+3x+4=2⇒x2+3x+2=0⇒(x+2)(x+1)=0⇒x=−1,−2