If f:R→R be defined by f(x)=x2+1, then find f−1{17} and f−1{−3}.
We know that,
if f:A→13
such that yϵ3. Then,
f−1(y)={xϵA:f(x)=y}. In other words, f−1(y) is the set of pre-images of y.
Let f−1(17)=x. Then, f(x) = 17
⇒x2+1=17
⇒x2=17−1=16
⇒x=±4
Let f−1(−3)=x. Then, f(x) = -3
⇒x2+1=−3
⇒x2=−3−1=−4
⇒x=√−4
∴f−1(−3)=θ