[f(x)]2=x∫0[{f(t)}2+{f′(t)}2]dt+100
Differentiating w.r.t x
2f(x).f′(x)=[f(x)]2+[f′(x)]2[∵ddxx∫af(t)dt=f(x)]
⇒[f(x)−f′(x)]2=0⇒f(x)=f′(x)⇒∫f′(x)f(x) dx=∫ dx+c⇒ln|f(x)|=x+lnC⇒f(x)=Cex
Now, for x=0
[f(0)]2=0∫0[{f(0)}2+{f′(0)}2]dt+100⇒[f(0)]2=100⇒f(0)=10 (∵f:R→R+)
∴f(x)=10ex