The correct options are
A f(x) is onto function
B f(x) is one-one function
C f(x) is an odd function
D f(|x|) & |f(x)| are identical
We have,
exf(y)+eyf(x)=2ex+y−ex−y−ey−x∀x,yϵR,
Put x=y⇒2exf(x)=2e2x−2
f(x)=ex−e−x
f(−x)=−f(x)⇒ odd function
f′(x)=ex+e−x>0
⇒ one-one function
Also f(∞)→∞, f(−∞)→−∞
⇒ Range is (−∞,∞)=R= co-domain of f
Hence f is also an onto.
Also f(|x|)={f(x),x≥0f(−x)=−f(x),x<0
and |f(x)|={f(x),f(x)≥0⇒x≥0−f(x),f(x)<0⇒x<0
Thus f|(x|) and |f(x)| are identical