If f: R→ S defined by f(x)=sinx−√3cosx+1 is onto ,then the interval of S is
[–1, 3]
[1, 1]
[0, 1]
[0, –1]
−√1+(−√3)2 ≤ (sinx−√3cosx)≤√1+(−√3)2
−2≤(sinx−√3cosx)≤ 2
−2+1≤(sinx−√3cosx+1)≤ 2+1
−1≤(sinx−√3cosx+1)≤ 3 i.e., range=[−1,3]
∴ For f to be onto S=[−1,3].