f:→y as f(x)=√3sinx+cosx+4 is onto.
So, we need to find the range of f.
Now; √3sinx+cosx+4=2(√32sinx+12cosx)+4
Since sinπ3=√32 and cosπ3=12 , thus:
2(√32sinx+12cosx)=2cos(x−π3)
f(x)=2cos(x−π3)≤1
Then, we have −1≤cos(x−π3)≤1
Or ,−2≤2cos(x−π3)≤2
Or, 2≤2cos(x−π3)+4≤6
Or, 2≤f(x)≤6
y=[2,6]