1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Geometrical Representation of Argument and Modulus
If fθ= [ 1...
Question
If
f
(
θ
)
=
1
+
sin
2
θ
cos
2
θ
4
sin
4
θ
sin
2
θ
1
+
cos
2
θ
4
sin
4
θ
sin
2
θ
cos
2
θ
1
+
4
sin
4
θ
Then number of solution of
f
(
θ
)
=
0
in
[
0
,
π
2
]
is
Open in App
Solution
Let
f
(
θ
)
=
∣
∣ ∣ ∣
∣
1
+
sin
2
θ
cos
2
θ
4
sin
4
θ
sin
2
θ
1
+
cos
2
θ
4
sin
4
θ
sin
2
θ
cos
2
θ
1
+
4
sin
θ
∣
∣ ∣ ∣
∣
[
R
′
2
=
R
2
−
R
1
and
R
′
3
=
R
3
−
R
1
]
=
∣
∣ ∣ ∣
∣
1
+
sin
2
θ
cos
2
θ
4
sin
4
θ
−
1
1
0
−
1
0
1
∣
∣ ∣ ∣
∣
=
4
sin
4
θ
+
(
1
+
sin
2
θ
+
cos
2
θ
)
=
4
sin
4
θ
+
2
.
Now for
f
(
θ
)
=
0
we have
sin
4
θ
=
−
1
2
or,
sin
4
θ
=
sin
(
−
π
6
)
or,
4
θ
=
n
π
+
(
−
1
)
n
+
1
π
6
[Where
n
∈
Z
(Set of integers)]
For
n
=
1
,
4
θ
=
π
+
π
6
=
210
o
θ
=
52.5
o
which
∈
[
0
,
π
2
]
For
n
=
2
,
4
θ
=
2
π
−
π
6
=
330
o
θ
=
82.5
o
which also
∈
[
0
,
π
2
]
.
For other values of
n
,
θ
∉
[
0
,
π
2
]
.
So,
f
(
θ
)
=
0
admits two solutions.
Suggest Corrections
0
Similar questions
Q.
If
∣
∣ ∣ ∣
∣
1
+
s
i
n
2
θ
c
o
s
2
θ
4
s
i
n
4
θ
s
i
n
2
θ
1
+
c
o
s
2
θ
4
s
i
n
4
θ
s
i
n
2
θ
c
o
s
2
θ
1
+
4
s
i
n
4
θ
∣
∣ ∣ ∣
∣
=
0
such that
0
≤
θ
≤
π
2
then
θ
is