If f(θ)=∣∣
∣
∣∣cos2θcosθsinθ−sinθcosθsinθsin2θcosθsinθ−cosθ0∣∣
∣
∣∣ then for all θ,
The correct option is C f(θ)=1
f(θ)=∣∣
∣
∣∣cos2θcosθsinθ−sinθcosθsinθsin2θcosθsinθ−cosθ0∣∣
∣
∣∣
f(θ)=∣∣
∣∣10−sinθ01cosθsinθ−cosθ0∣∣
∣∣
From, C1→C1−sinθC3, C2→C2+cosθC3
=∣∣
∣
∣∣10−sinθ01cosθ0−cosθsin2θ∣∣
∣
∣∣
Expand along first column, we get
=sin2θ+cos2θ
∴f(θ)=1