If f′′(x)>0 and f′(1)=0 such that g(x)=f(cot2x+2cotx+2) where 0<x<π then the interval in which g(x) is decreasing is
g′(x)
=−f′((1+cot(x))2+1).(2(1+cot(x))).cosec2x
Hence
g′(x)<0 for g(x) to be a decreasing
function.
−f′((1+cot(x))2+1).(2(1+cot(x))).cosec2x<0
Or
f′((1+cot(x))2+1).(2(1+cot(x))).cosec2x>0
Now
cosec2x is always greater than 0.
Hence
f′((1+cot(x))2+1).(2(1+cot(x)))>0
Or
(2(1+cot(x)))>0 ...(i) and f′((1+cot(x))2+1)>0 ...(ii)
Or
2(1+cot(x))>0
cot(x)<−1
x<π−π4
Or
x<3π4 ...(a)
Now consider ii,
f′((1+cotx)2+1)
Let x=3π4
cot(x)=−1
Hence
f′(1)x=3π4
=0
Hence
x=3π4 is a critical point for
f(x).
Thus
g(x) is decreasing on the interval
(0,3π4)... from a.