If f(x)=0 is a quadratic equation such that f(−π)=f(π)=0 and f(π2)=−3π24, then limx→−πf(x)sin(sinx) is
2π
Given :
f(−π)=f(π)=0 and f(π2)=−3π24
∴f(x)=x2−π2
⇒limx→−πx2−π2sin(sin x)
=limh→0(−π+h)2−π2sin(sin(−π+h))
=limh→0−2hπ+h2−sin(sin h)
=limh→0h−2π−sin(sin h)sinh×sinhh=2π