If f(x)=1−2x+3x2−4x3+⋯+17x16−18x17, then the coefficient of x15 in f(x−1) is/are
A
16⋅18C16−17⋅18C17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
18C17−1818C16
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
19C17−1918C16
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
17⋅18C16−16⋅19C16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C19C17−1918C16 f(x)=1−2x+3x2−4x3+⋯+17x16−18x17xf(x)=x−2x2+3x3+⋯−16x16+17x17−18x18
Adding both, we get ⇒(1+x)f(x)=1−x+x2−x3+⋯+x16−x17−18x18⇒(1+x)f(x)=(−x)18−1−x−1−18x18⇒f(x)=1−(x)18(x+1)2−18x18(1+x)
Replacing x→x−1, we get ⇒f(x−1)=1−(x−1)18x2−18(x−1)18x
Coefficient of x15 =−18C1(−1)1−1818C2(−1)2=18C17−1818C16=19C17−18C16−1818C16=19C17−1918C16