If f(x)=(1-x)(1+x)then f(f(cos2θ))=
tan2θ
sec2θ
cos2θ
cot2θ
Explanation for the correct otpion:
Step 1: solving f(cos2θ)
Given: f(x)=(1-x)(1+x)
f(cos2θ)=1-cos2θ1+cos2θ
We know that,
∴cos2θ=2cos2θ-1=1-2sin2θ
Substitute in the above equation,
∴f(cos2θ)=1-(1-2sin2θ)1+(2cos2θ-1)=2sin2θ2cos2θ=sin2θcos2θ=tan2θ
Step 2: solving f(f(cos2θ))
f(f(cos2θ)=1-f(cos2θ)1+f(cos2θ)=1-tan2θ1+tan2θ=1-sin2θcos2θ1+sin2θcos2θ=cos2θ-sin2θcos2θ+sin2θ=cos2θ1∵cos2θ-sin2θ=cos2θ,cos2θ+sin2θ=1f(f(cos2θ)=cos2θ
Hence, the correct option is an option(c),