If f(x)=(1+x)n then the value of f(0)+f′(0)+...+fn(0)n! is
2n
Given, f(x)=(1+x)n
So, f′(x)=n(1+x)n–1
f′′(x)=n(n–1)(1+x)n–2
f′′′(x)=n(n−1)(n−2)(1+x)n−3
.
.
.
fn(x)=n(n–1)......2.1(1+x)0
f(0)=1, f′(0)=n, f′′(0)=n(n–1), f′′′(x)=n(n−1)(n−2)
Thus, f(0)+f′(0)+...+fn(0)n!
=1+n+n(n−1)2!...n(n−1)...2.1n!
= nC0+ nC1+ nC2+...+ nCn=2n