The correct option is C f′′(0)=−6
f(x)=10cosx+(13+2x)sinx⇒f(x)=10cosx+13sinx+2xsinx
Differentiating w.r.t x, we get
⇒f′(x)=−10sinx+13cosx+2sinx+2xcosx∴f′(x)=−8sinx+13cosx+2xcosx
Differentiating w.r.t x, we get
⇒f′′(x)=−8cosx−13sinx+2(cosx−xsinx)
∴f′′(x)=−6cosx−13sinx−2xsinx
So,
f′(0)=13,f′′(0)=−6f′′(x)+f(x)=4cosx